Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
PLoS One ; 17(7): e0269204, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1963001

RESUMEN

BACKGROUND: Environmental factors can influence the epidemiological dynamics of COVID-19. To estimate the true impact of these factors on COVID-19, climate and disease data should be monitored and analyzed over an extended period of time. The Gulf Cooperation Council (GCC) countries are particularly lacking in such studies. This ecological study investigates the association between climate parameters and COVID-19 cases and deaths in the GCC. METHODS: Data on temperature, wind-speed and humidity and COVID-19 cases and deaths from the six countries of the GCC were collected between 29/1/2020 and 30/3/2021. Using Spearman's correlation coefficient, we examined associations between climate parameters and COVID-19 cases and deaths by month, over four different time periods. A two-step cluster analysis was conducted to identify distinct clusters of data using climate parameters and linear regression analysis to determine which climate parameters predicted COVID-19 new cases and deaths. RESULTS: The United Arab Emirates (UAE) had the highest cumulative number of COVID-19 cases while Bahrain had the highest prevalence rate per 100,000. The Kingdom of Saudi Arabia (KSA) reported the highest cumulative number of deaths while Oman recorded the highest death rate per 100,000. All GCC countries, except the UAE, reported a positive correlation between temperature and cases and deaths. Wind speed was positively correlated with cases in Qatar, but negatively correlated with cases in the UAE and deaths in KSA. Humidity was positively correlated with cases and deaths in Oman, negatively correlated in Bahrain, Kuwait, Qatar and KSA but there was no correlation in the UAE. The most significant predictors in cluster analysis were temperature and humidity, while in the regression analysis, temperature, humidity and wind speed predicted new COVID-19 cases and deaths. CONCLUSION: This study provides comprehensive epidemiological information on COVID-19 and climate parameters and preliminary evidence that climate may play a key role in the transmission of the COVID-19 virus. This study will assist decision makers in translating findings into specific guidelines and policies for the prevention and elimination of COVID-19 transmission and infection.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Clima , Humanos , Humedad , Incidencia , Kuwait/epidemiología , Omán/epidemiología , Qatar/epidemiología , SARS-CoV-2 , Arabia Saudita/epidemiología , Emiratos Árabes Unidos/epidemiología
2.
Front Immunol ; 12: 796094, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1690446

RESUMEN

It is still controversial whether chronic lung inflammation increases the risk for COVID-19. One of the risk factors for acquiring COVID-19 is the level of expression of SARS-CoV-2 entry receptors, ACE2 and TMPRSS2, in lung tissue. It is, however, not clear how lung tissue inflammation affects expression levels of these receptors. We hence aimed to determine the level of SARS-CoV-2 receptors in lung tissue of asthmatic relative to age, gender, and asthma severity, and to investigate the factors regulating that. Therefore, gene expression data sets of well-known asthmatic cohorts (SARP and U-BIOPRED) were used to evaluate the association of ACE2 and TMPRSS2 with age, gender of the asthmatic patients, and also the type of the underlying lung tissue inflammatory cytokines. Notably, ACE2 and to less extent TMPRSS2 expression were upregulated in the lung tissue of asthmatics compared to healthy controls. Although a differential expression of ACE2, but not TMPRSS2 was observed relative to age within the moderate and severe asthma groups, our data suggest that age may not be a key regulatory factor of its expression. The type of tissue inflammation, however, associated significantly with ACE2 and TMPRSS2 expression levels following adjusting with age, gender and oral corticosteroids use of the patient. Type I cytokine (IFN-γ), IL-8, and IL-19 were associated with increased expression, while Type II cytokines (IL-4 and IL-13) with lower expression of ACE2 in lung tissue (airway epithelium and/or lung biopsies) of moderate and severe asthmatic patients. Of note, IL-19 was associated with ACE2 expression while IL-17 was associated with TMPRSS2 expression in sputum of asthmatic subjects. In vitro treatment of bronchial fibroblasts with IL-17 and IL-19 cytokines confirmed the regulatory effect of these cytokines on SARS-CoV-2 entry receptors. Our results suggest that the type of inflammation may regulate ACE2 and TMPRSS2 expression in the lung tissue of asthmatics and may hence affect susceptibility to SARS-CoV-2 infection.


Asunto(s)
Enzima Convertidora de Angiotensina 2/inmunología , Asma/inmunología , COVID-19/inmunología , Citocinas/inmunología , Regulación de la Expresión Génica/inmunología , Pulmón/inmunología , SARS-CoV-2/inmunología , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Serina Endopeptidasas/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA